
International Journal of  Theoretical Physics, Vol. 16, No. 10 (1977), pp. 729-740 

Regular Quantum Field Theories 

J. RAYSKI 

Institute of Physics, Jagellonian University, Cracow 

Received: 25 January !977 

Abstract 

Mathematically regular and more precise versions of quantum field theories are discussed. 
A new class of representations called "minimal wave-packet representations" is introduced. 
Several possibilities of constructing nonconventional, bounded interaction operators 
(nonpolynomial, nonhnear, explicitly or implicitly nonlocal) corresponding to the tradi- 
tional ~4 or ~3 interactions are reviewed. The problem of macrocausality is discussed. A 
procedure of renormalization of regular theories is indicated. 

1. Minimal Wave-Packet Representations (MWPR ) 

Quantum field theory,  being a theory of  systems with infinitely many 
degrees of  freedom, presents serious difficulties and peculiarities. One of  the 
peculiarities was exhibited by  the discovery of  unitari ly inequivalent repre- 
sentations. It compels one to point  out  a particular representation (among 
the variety of  representations seemingly standing on equal footing) as physi- 
cally admissible and regard every other representation unitarity equivalent to 
this particular one as equally well acceptable,  and every inequivalent as 
inadmissible. 

Any particular representation is connected with eigenvectors of  a complete 
set of  observables which, in turn, are related in quantum field theory to a 
spacelike hypersurface or a hyperplane t = const, of a particular inertial 
frame of  reference. Therefore a choice of  a particular representation distin- 
guishes a particular coordinate system while the Lorentz covariance has to be 
demonstrated by showing that  two representations connected with two 
different Lorentz frames are unitari ly equivalent (belong to the same 
equivalence class). 

Let us introduce an inertial-Cartesian coordinate system x u and consider 
the field quantities ~(r)  at a fixed t ime instant,  say t = 0. Consider also a six- 
dimensional phase space of  the coordinates r and of  the arguments k of  the 
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Fourier-transformed field quantities 

if(k) - (2))3/2 fd3xe - i~  O(r) (1.1) 

Let us divide this phase space into ceils of magnitude h 3 (unit cells in natural 
units h = c = 1) and enumerate them by an index n in an arbitrary but unique 
way. With each cell let us connect a function 

i ~' 3 
~n(r)  - (2- )  3/2|dTr3 k e i(k - kn)(r - rn) e -x~(k - kn)2 (1.2) 

and its Fourier transform 

t~n(k) = ~ ( ~ f  d3x e-i(k-  kn)(r- rn) e-(r-  rn)2/X2 (1.3) 

where the components of  kn and rn denote a point in the nth cell o f  the 
phase space. As is well known, such Gaussian distributions yield a minimum of 
the dispersion products Ar - Ak. 

Consider, e.g., a complex scalar field ~ describable classically within the 
traditional f ramework of  a Lagrangian and Hamiltonian formalism and assume 
that the most general form of a physically acceptable field at any t ime instant 
is representable as a superposition of the functions (1.2) 

if(r) = ~ q(n)~n(r), rr(r) : ~ p(n)~n(r ) (1.4) 
n n 

where rr is the momentum canonically conjugate to the field quanti ty ft. This 
assumption settles the meaning of completeness in the functional space { if) 
(Bargmann, et al., 1971 ; Perelomov, 1971). 

Field quantization is to be performed by  regarding the enumerable set of  
coefficients q(n) and p(n) as operators chosen so as to satisfy the usual 
canonical (equal time) commutat ion relations 

[rr(r), ~(r ' ) ]  = 1  ~(3) [~(r), ~(r ' )]  = [~r(r), Ir(r')] = 0 (1.5) 
i (r - r')' 

Novel in this procedure is the circumstance that the functions ~n do not 
constitute an orthogonal set: 

f d3x~ *m(r)~n(r) = gmn (1.6) 
with 

gnn = 1 but gnm ~ 0 for m :~ n (1.6') 

Consequently, the commutat ion relations between the coefficients of  the 
decomposition (1.4) are slightly more complicated than usually: 

[p(n) q(m)] = ( 1 / i ) g n m  (1.7) 
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where gnm are defined by the relations 

g " % m  = (1.8) 

The relations (1.7) may be' satisfied with the help of the usual creation and 
annihilation operators introduced by the following relations: 

/ \1/2 

(2Con)l/2 [a(n) + b t (n)] ,  i 

(1.9) 

using the summation convention for the index m in (1.9). At first, con is an 
arbitrary coefficient. 

It should be noticed that in the case of the traditional formulations in 
terms of creation and annihilation operators at(k)  and a(k) for particles with 
exactly fixed momenta k, one was compelled, later on, to introduce an 
auxiliary concept of the so called "test functions." In our case this is not 
necessary because the functions (1.2) serving for construction of the basis of 
the minimal wave packets' representation (MWPR) are themselves physically 
satisfactory test functions. 

The,physical meaning of the creation and annihilation operators a*(n), 
a(n), b (n), b(n) introduced above is obvious: They apply to particles 
characterized dynamically by the fact of belonging to the nth cell of the phase 
space, i.e., their positions and momenta are known up to the usual quantum 
mechanical uncertainties. Thus, the representations described above are those 
of the numbers of particles represented by minimal wave packets, i.e., with 
products of momentum and position inaccuracies reaching a minimum (with 
the exclusion of the unphysical extreme cases of infinitely sharp localization 
at the cost of a complete lack of information about momentum or vice versa). 
Therefore such representations (MWPR) deserve to be also called "proper" or 
"fundamental." 

Inasmuch as the number of cells in the phase space is enumerable, these 
representations possess enumerable bases (the ~ space is separable) similarly 
as in the case of momentum representations in a periodicity box. Each vector 
of the basis as well as their finite superpositions represent well-localized states, 
i.e., all particles are practically restricted to finite distances from the origin 
of the coordinate system while, on the other hand, the position of neither of 
them is infinitely sharp. The space of physically admissible state vectors is the 
Schwarz space (S space). 

Every representation of this type introduces a kind of crystal structure with 
nodes (cites) at the centers of  the minimal phase-space cells. This reminds one 
of Wilson's concept of a discrete space (Wilson, 1974), but in our case such 
structures are purely abstract and the theory remains translationally invariant. 
Indeed, two representations differing from one another by a shift of the cells 
are unitarily equivalent. Also, a transition between two such representations 
differing from one another by a Lorentz transformation is effected by a 
unitary transformation. Besides the Lorentz transformations and translations 
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of the cells also their shape may be changed, e.g., by changing the value of the 
constant k appearing in (1.2) and (1.3) provided we keep 0 < k < ~. 

tt should also ~ be pointed out that the departure from orthogonality of the 
set of  functions (1.2) spanning the representation is very small: 

grnn ~- ~mn (1.10) 

In the approximation consisting in a replacement ofgmn by 5ran , and taking 
kvery large,the MWPR exhibit all the advantages of momentum representations 
in a finite box. With such representations neither an artificial concept of a 
periodicity box nor a clumsy procedure of introducing a cutoff  in the x space 
is necessary. 

To conclude this section let us postulate that every representation unitarily 
equivalent to the MWPR described above is physically admissible and proper, 
whereas every other, inequivalent, representation is to be rejected. 

2. Bounded Interactions 

Quantum field theories formulated in the representations described above 
and with interactions given by bounded operators will be called "regular field 
theories." There exist, a priori, severa] possibilities of constructing bounded 
interaction operators, and it seems worthwhile to discuss here briefly some 
of them. 

2.1 NonpolynomialInteractions. The most suggestive possibility of  
constructing a bounded interaction in field theory is to take, as an interaction 
Lagrangian density £~a,, a bounded function of the field quantities, e.g., the 
famous Sine-Gordon interaction 

£z' =/-4g(cos l~p - 1) (2.1) 

where ~o is a real scalar field,g is a dimensionless coupling constant, and t is a 
constant with dimension of length (in natural units). The first term of the 
power series expansion of (2. !) contributes to the bare mass, whereas the 
next term yields the famous ~0 interaction. The trouble with such form of 
interaction is that, originally, the interaction term appears without Wick's 
normal ordering, whereas if performing the ordering of the Lagrangian 
~.qa, _+ : 5~,: the separate terms of the expansion become meaningful but the 
boundedness of the Lagrangian as a whole is destroyed. Indeed, putting cos ttp 
in between the colons means subtracting infinite terms. 

Several authors expressed the opinion that in every case of nonpolynomial 
Lagrangians the effective interaction disappears, i.e., the field is effectively a 
free field. We are not quite convinced by their arguments and expect that, at 
least in some cases, a bounded nonpolynomiat Lagrangian density may yield 
effectively a nontrivial theory. In particular, a bounded function of a normally 
ordered operator (but not a function ordered as a whole), e.g., 

~ '  = g1-4 arc tan l 4 :~o 4 :(x) (2.2) 
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seems to be well defined, bounded,  and not effectively equal to zero. But we 
admit that  a rigorous proof  of  this supposition is unknown yet and the 
problem needs further investigation. 

2,2. A Nonlinearlnteraction. Interaction operators do not need to be 
necessarily defined analytically as polynomials or infinite series of  the field 
quantities but may be as well introduced by defining how they act upon all 
bra-ket  vectors. Let us consider the following example of  a bounded inter- 
action corresponding to the SO4 interaction (or any other power of  so)in the 
weak field limit. To this end let us point out that with each linear operator 
0 there is associated a function (q5 t0 txI r) attaching a number to each pair of  
bra (Ok t and ket I~} but not vice versa: It is always possible to define functions 
attaching a number to each pair of  vectors (qb and '~) which are not connected 
with linear operators. Let us denote such functions by  the following symbol: 

F(~ ,  xI,) = ( ~ .  F * ~ )  (2.3) 

where vertical lines (being symbols of  disjunction or separability) have been 
replaced by asterisks (being symbols of  conjunction). Indeed, we are not 
allowed to detach (q~ or ~F) from (2.3) to get a ket or bra vector. It is also not 
allowed to replace an asterisk by a unit operator 

• --> { = E lAn) (Anl (2.4) 
n 

if F is not a linear function of both (q5 and 'Is). 
After these preliminaries let us define the following interaction function 

(q5 , j ~  , ~ )  = {0(~1:~04: I ~ )  if I(qsI :SO4:IxI'}I 2 ~ l - s  

otherwise (2.5) 

with l denoting a fundamental  length. 
At first sight one is inclined to reject decisively such interactions because 

every child knows that a probabilistic interpretation is possible only if observ- 
ables are represented by linear operators. The point is, however, whether the 
energy density (Hamiltonian) is an observable in the strict sense or not. It is 
already at the classical level that the Hamiltonian is sharply distinguished 
among functions of  generalized coordinates and momenta  inasmuch as it is 
that particular function that cannot, itself, play the role of  a generalized 
momentum because a coordinate canonically conjugate to it is not well 
defined. We may assume that (besides spin and unitary spin variables) only 
generalized coordinates and momenta  are observables in the strict sense, 
whereas the Hamiltonian density is not. Consequently, the energy representa- 
tion does not belong to the physically acceptable representations, in agree- 
ment with the results of  Section 1. 

In the case of  a nonlinear Hamiltonian of interaction the dynamics may be 
formulated on the following axiomatic basis: If  the initial vector is t to) and 
we are interested in measuring (a complete set of) observables denoted for 
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brevity A at the instant t, then we have to solve the Schr6dinger equation in 
this particular representation 

f d3x(An * oVg * Am)(Amlt)= ih(Anlt) (2.6) 
m 

with initial <An[to) given. The quantity <An It> computed from (2.6) is just 
the probability amplitude in question. If, on the other hand, we were interested 
in a measurement, at the instant t, of another (complete) set of observables B, 
then we should solve an inequivalent to the former equation in the B representa- 
tion but not project the solution of (2.6) upon the basis vectors [Bin). In this 
way it is seen that within the framework of this formalism there exist many 
inequivalent Schr6dinger equations yielding unitarily inequivalent results: a 

"fari" of vectors It) resulting from one and the same initial vector [to). This is 
acceptable (the more so as the ordinary quantum field theory suffers from the 
appearance of inequivalent representations) but shows clearly that it does not 
make sense to speak about the concept of "state" as such (describing immanently 
the system) but only about some recipes or prescriptions of how to evaluate 
probabilities Of outcomes of prospective measurements. 

One should keep open eyes for the possibility of introducing bounded and 
essentially nonlinear interactions, one example of them having been described 
above. 

2.3. Implicitly NonlocalInteractions. It seems to be possible to deal with 
renormalizable as well as with nonrenormalizable theories in the following way: 
First of all, use the (well known to mathematicians) prescriptions of regulariz- 
ing the results of the theory by taking tile finite part of Hadamard (FP) from 
any expression (integral) appearing in the course of computations (Gelfand 
and Shilov, 1958). Then perform a renormalization of the constants appearing 
explicitly in the Lagrangian and Hamiltonian (masses, coupling constants). 
Moreover, perform a renormalization of the vacuum energy (by a suitable 
subtraction) and- i f  necessary-perform also a renormalization of the prob- 
ability amplitudes. The finite results obtained in this way may be assumed 
to describe just the physical reality, notwithstanding whether the theory with 
which we started was renormalizable or not renormalizable. 

However, if the theory is nonrenormalizable, i.e., if the dimension of the 
coupting constant is a positive power of length, 

g=/X with x > O  (2.7) 

the resulting theory, truncated by taking FP, becomes nonlocal with the 
nonlocality range of the order of magnitude of I. Such theory deserves the 
name of implicitly nonlocal in contradistinction to a theory discussed in the 
next section. 

It should be noticed that the procedure of extracting a finite part FP 
differs from most of the regularization procedures (cutoffs) because in this 
case the cutoff is not to be removed at the end of the computations (after 
renormalization). 
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In contradistinction to other alternatives of regular theories discussed in 
this paper it is not obvious whether the whole perturbative serie~ converges 
to a finite result, or whether it is only an asymptotic series. 

2.4. E x p l i c i t l y  N o n l o c a l  In terac t ions .  Historically the earliest attempts at 
formulating a field theory with bounded interaction were the explicitly non- 
local theories involving a form factor in the Lagrangian of interaction 
(Peierls, and McManus, 1948; Rayski 1951, 1963). The nonlocal analog of 
a ¢3 interaction is derivable from an action principle (Hamilton principle) 
with the following action integral: 

a~ 

' d r"  d r ' " F  r' r i ' )  ~'~"~"~ dxfdr'f ( , r " ,  : : ( 2 .8 )  
O 1 

where, besides the four-point x ,  there are involved further.three four-points 
I t !  I t f  . ! 

x ,  x ,x  . For abbreviation ~0' denotes ~0(x'), etc., Whereas r etc., denote the 
relative coordinates 

! t i t  x t~  It! it! r ' = x  - x ,  = - x ,  r = x  - x (2.9) 

It should be noticed that only one integral in (2.8) is extended between the 
finite limits (between two spacelike hypersurfaces of intended measurements), 
whereas the remaining integrations extend over the whole space-time. This is 
necessary to secure the additivity of the action integrals 

~[]31 = ~'lYa2 + ~]21 (2.10) 

It is seen that the limits of integrations (the hypersurfaces of intended 
initial and final measurements ol and e2) are built into the manifestly non- 
local theory more intr'msically than was. the case with the local theories, 
because now the Lagrange equations are mixed integrodifferential equations 
with one of the integrations extended between these fimits so that also their 
solutions must be functionals of these limits: 

~0 = ~0(x, ox, •2) (2.1 1) 

Consequently, these hypersurfaces are not merely auxiliary, abstract concepts, 
but must possess an objective meaning: They mustbe t he  hypersurfaces where 
an initial and a final state have to be determined by means o f  ac tua l  
measurements. 

It was pointed out repeatedly and with great stress by Niels Bohr that in 
order to speak wisely about physicalphenomena one should not treat the 
physical system quite abstractly but relate it to the measunng apparatus and 
to the well-def'med conditions of measurement. Also the evolu.tion of  physical 
systems in time may depend objectively upon when and where the measuring 
apparatus was used. In a nonlocal theory it is not strange and unexpected that 
the hypersurfaces of measurements may interfere with the time evolution of 
the system between them, i.e., that the solutions of the field equations may 
slightly depend (functionally) on them. This is an unavoidable sign of 
violation of microcausality. 



736 RAYSKI 

With a suitably chosen form factor the Lagrangian density of  interaction is 
bounded and the Lagrangian equations are regular, i.e., their solutions are 
analytic functions of the coupling constant. Therefore it is legitimate to start 
with quantizing the free fields in a MWPR described in Section 1 (or in a 
momentum representation in a periodicity box) and to derive the operators 
representing the interacting fields from those describing free fields by means 
of the usual perturbation calculus. 

In spite of an essential progress in the problem of securing convergence, 
the manifestly nonlocal theories were rejected by a great majority of experts 
mainly because of the following reason: Relativistic form factors of the type 
appearing in (2.8) seem to be incompatible with the requirement of  macro- 
causality. Being Lorentz invariant they are functions of the squared four- 
vectors r" and their scalar products and assume the same (finite) values when- 
ever these scalars are small constants, which occurs not only when all com- 
ponents of these vectors are small separately but also along the light-cone 
where their timelike and spacelike components separately may be arbitrarily 
large. 

In order to secure macrocausality (Peiefls and McManus, 1948; Chretien and 
Peierls, 1953; Arnous and Heitler, 1959) the form factors should be made dependent 
not only upon scalar products formed of the coordinate differences (2.9) but also 
upon a timelike four-vector. A possible candidate could be the four-momentum 
Pu (Wataghin 1959, Rayski 1968), because in terms o fP  u one might define a 
center of mass system of coordinates, and introduce form factors being 
scalars assuming a desirable form (vanishing except for a microscopically 
extended domain) in the center-of-mass system. Unfortunately, this brings 
about serious complications: It means a dependence of the Lagrangian 
density upon the Hamiltonian, or upon the state vector since the latter 
determines which system of coordinates is the baricentfic system. Such a 
theory does not seem to be possible or, at least, must be extremely compli- 
cated and rather artificial. 

In what follows we shall discuss another possibility of securing macro- 
causality within the framework of manifestly nonlocal theories by taking 
advantage of the distinguished role played by the hypersurfaces of actual 
measurements al  and a> Namely, it is possible to relate with these hyper- 
surfaces a field of timelike four-vectors. Let us consider a scalar field X 
satisfying the Laplace equation: 

P3 X = 0 (2.12) 

and fixed uniquely by the conditions 

X[al I =C1, X[al l =C 2 (2.13) 

where the notation X[a] means the function X taken at a point at the hyper- 
surface o. The equation 

X = t  (2.14) 

where t denotes a parameter, defines a timelike de Donder's coordinate 
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(harmonic coordinate of Foc~:). The values t = C1 and t = C~ denote the 
hypersurfaces o 1 and 02, respectively. 

The above-introduced time coordinate t is manifestly privileged with 
respect to the pair of hypersurfaces ol/2. Moreover, there appears a privileged 
timetike vector field 

h u = 3uX (2.t5) 

Now, we come to the main point: If the field equations are necessariIy 
dependent functionally on the hypersurfaces ol/2, why not make them 
dependent in another way as well, namely, by assuming that the form factor 
is also dependent on them, or rather upon the vector field h ~ 

F= F(r',r'; r", h) (2.16) 

whereby all the vectors r~, rE, rE' , and h u originate at the same point x ~. 
In particular, the form factor may be of the form 

F(r ' , r" , r" ,h)=G(r ' , r" , r")6(r ' .h)6(r" .h) f (r ' " .  h) (2.17) 

The appearance of Dirac delta functions in (2.17) means that such form 
factors smear out the interaction only in spacelike directions, orthogonally 
to the gradient of the field X. For points situated on ol or 02 they smear out 
the interaction only tangentially to these hypersurfaces. Such form factors 
may be called spatially nonlocal. The function G in (2.17) may be chosen so 
as to restrict this tangential smearing out only to microscopically small space- 
like distances. In this way the manifestly nonlocal theory may be formulated 
in a way consistent with both the requirements of special relativity and 
macrocausality. On the other hand, similarly to the implicitly nonlocal theory, 
it violates microcausality and remains Lorentz covariant, only in a more 
restrictive sense than usual (conditioned Lorentz covariance). 

3. Quantization 

The differential equations of  nonpotynomial, nonlocal or nonlinear 
theories with bounded interactions or the integrodifferential equations in 
the case of manifestly nonlocal theories may be replaced by pure integral 
equations with bounded kernels. They are inhomogeneous equations with the 
inhomogeneous terms representing free fields which determine the initial 
conditions either on 01 or on 02. Since the kernels are bounded, the solutions 
may be obtained by means of a perturbation calculus, or iteration, starting 
with the free fields satisfying the same initial conditions as the interacting 
fields. The perturbation series may be shown to be convergent if the kernels 
are bounded and the domain enclosed between 01 and 02 is finite. 

Field quantization may be achieved in a most straightforward way by first 
quantizing the free fields in the MWPR described in Section 1 of this paper 
and then computing the interacting field operators by means of the perturba- 
tion calculus. A unitary operator U21 transforming the fields on 01 into those 
on 02 exists and may be computed as well by the perturbation calculus. 
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On the other hand, the problem of existence of the S operator, i,e., of the 
limit transitions with a l  to minus infinity and a2 to plus infinity is still problem- 
atic. But the existence of an S matrix is not really a necessary condition for a 
meaningful, physically well-founded scattering theory. This last always con- 
cerns, in reality, wave packets of  finite extensions. 

4. R enormalization 

The theories with bounded interactions are free of the usual, ultraviolet 
divergences. Of course, the masses and coupling constants are to be renormalized, 
but the respective renormalization constants are finite in this case. The only 
infinite constant is the vacuum self-energy in the case of a field considered in 
an infinite domain. This infinity is, however, not very harmful, owing to the 
fact that one can always subtract from the Hamiltonian an arbitrary constant 
without affecting the dynamics of the physical system. 

The renormalization procedure is rather simple in the case of regular 
theories: The dressed rest masses and coupling constants m, g are functions of 
the bare parameters appearing originally in the Lagrangian: bare masses mo, 
bare coupling constants go, and possibly also multiplicative parameters a o 
attached to the bare field quantities themselves, 

m = m(mo, go, ao), g = g(mo, go, ao), a = a(m o, go, ao) (4.1) 

It is only necessary to solve these equations in the form 

m o = mo(m, g, a), go =go(m, g, a), a o = ao(m, g, a) (4.1 ') 

and fix the numerical values of mo, go, and ao appearing originally in the 
Lagrangian by introducing into the right-hand sides of (4.1') the actual, 
experimentally established values of m , g ,  and a = 1. The theory is renorm- 
alizabte if the equations (4.1) are soluble in the form (4.1') and if the actual 
values of re,g,  and ~ = 1 belong to the domain of the functions (4.1'). No 
other criteria of renormalizability exist in the case of regular theories. 

However, in the case of  the (manifestly) nonlocal or nonlinear theories 
there appears an additional difficulty: the dressed parameters m , g  computed 
within a theory that manifestly privileges the hypersurfaces of measurement 
(e.g., by making the form factor dependent on gxl2 or by defining the inter- 
action in terms of a representation attached to one of them) might and almost 
certainly would depend functionally on these hypersurfaces or on the .vector 
field h u given by (2.15). This would be inadmissible because physical masses 
and coupling constants are numbers independent of any measurement condi- 
tions. But the situation may be reversed by assuming the bare quantities to be 
some functionals of the hypersurfaces oi l  2 (or of  the vector field hu) 

m o = m o ( m , g , a ,  ol, o2), g o = g o ( m , g , a ,  ol, o2), 

ao = C~o(rn, g, a, ol, o2) (4.2) 

which is admissible because they are only auxiliary quantities deprived of any 
physical meaning. These functionals should be chosen so as to obtain for the 



REGULAR QUANTUM FIELD THEORIES 739 

dressed, physical parameters m, g the values known from experiment, inde- 
pendent of the choice of ol and o2. There is little doubt about the feasibility 
of this program. 

5. Outlook 

Hitherto, the traditional, local, polynomial, and renormalizable theories 
have been proved, at most (and taking the utmost pains i n demonstrating it) 
to be free of the ultraviolet divergences .(after regularization and renormali- 
zation) in every finite order of the perturbation calculus, but nobody was 
able to prove that the whole perturbative series converges-in other words, 
that the theory is meaningful. The situation is quite different in the cases of 
nonpolynomial, nonlinear, or nonlocal theories with bounded interactions. 
They constitute the first examples of regular quantum field theories for which 
the existence proofs are feasible. Under such circumstances the fact that a 
grea~ majority of experts are exclusively interested in the traditional, local, 
polynomial theories shows only their extreme conservatism. 

By introducing form factors of the type similar to (2.8) to electrodynamics, 
or restricting the electrodynamical interaction in a way similar to (2.3), 
(2.5), or (2.6), one would spoil gauge invariance. The breakdown of gauge 
invariance is, however, weak: global gauge invariance (gauge invariance of the 
first kind) still holds true, as well as the invariance of the second kind provided 
the gauge function O(x) is sufficiently slowly variable so that on distances of 
the order of the constant I (determining the upper bound of the nonlinear 
interaction or the range of nonlocality) it may still be regarded as constant. 
Such weak violation of gauge invariance is physically acceptable. 

Nevertheless, even a weak breakdown of gauge invariance may have un- 
wanted effects, viz., production of a photon self-mass of a considerable mag- 
nitude. It is possible to avoid this difficulty by introducing into the Lagrangian 
another gauge-invariance-violating term, namely a bare photon rest-mass term 
so as to cancel the self-mass arising from the nonlocal interaction. This seems 
satisfactory in view of the fact that it is the dressed but not the bare rest mass 
of the photon that has to be exactly equal to zero. The requirement of having 
gauge covariance secured simultaneously in all orders of perturbation calculus 
may be a prejudice. The appearance of a nonvanishJng "mechanical" mass may 
help to avoid the infrared difficulties appearing in the traditional electro- 
dynamics. 

A program for the future consists in a thorough investigation of all types 
of bounded interactions (nonpolynomial, nonlinear, nonlocat) in order to see 
which of them yield effectively nonvanishing and physically satisfactory 
results, in best agreement with the experimental evidence. 
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